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The propagation of hydromagnetic planetary waves in a rotating thin shell of 
fluid in regions of magneticland velocity shears is studied using the ,&plane 
approximation. In  slowly varying shear the use of the WKBJ approximation 
makes it possible to construct the various types of ray trajectory that can occur 
and consequently the conditions that give rise to critical-latitude phenomena and 
trapping are deduced. 

The opposite extreme to the WKBJ limit, namely reflexion and refraction of 
waves by a current-vortex sheet, is also analysed. In this case the conditions that 
lead to wave amplification (or over-reflexion) are investigated. Qualitatively, it 
is found that reflected A.lfv6n modes are amplified if the jump in the flow speed 
across the sheet lies between two speeds which are respectively greater and less 
than the sum of the Alfv6n speeds on either side of the sheet. Also, Rossby waves 
incident upon a sufficiently strong easterly flow can suffer over-reflexion. 

The general case of reflexion and refraction at  a finite double (magnetic and 
velocity) shear layer is discussed. In  analogy with the invariance of ' wave action' 
of gravity waves in a shear flow we construct a quantity d which is invariant 
except at  critical latitudes, where it is discontinuous. By using the asymptotic 
solutions near these critical latitudes and by adopting the proper matching 
procedure for the solutions on either side of these latitudes it is possible to relate 
the two constant values of& on either side of each critical latitude. These general 
results are then applied to various profiles of shear flow and magnetic field so as to 
elucidate the manner in which an incident wave is reflected from and transmitted 
through a double layer. 

1. Introduction 
The propagation properties of hydromagnetic waves in a rotating fluid are 

relevant to many geophysical and astrophysical applications. Hide ( 1966) investi- 
gated the properties of these waves on a ,&plane and discussed their relevance to 
the secular variation of the geomagnetic field. Hide & Jones (1972) made an 
extensive numerical study of the dispersion relationship derived by Hide (1966). 
They found that the interaction between the magnetic field and the rotation 
allows two types of wave motion. One type corresponds to a westward-propa- 
gating Rossby wave and is modified by magnetic effects, while the other corre- 
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sponds to westward- and eastward-propagating Alfvdn waves which, because of 
the effect of rotation, can propagate across magnetic lines of force. If the Alfvbn 
speed is sufficiently large, the westward-propagating Rossby and Alfvdn waves 
coalesce into one mode. An alternative way to view this is to note that a Rossby 
wave propagating into regions of increasing magnetic field strength can be con- 
verted into an Alfvdn wave. Acheson (1973)) in his study of hydromagnetic waves 
in a uniformly rotating fluid, has shown that the simultaneous action of angular 
velocity and magnetic field can give rise to other novel features, i.e. the valve 
effect. 

The scatter of data on the magnetic fields and flow velocities in the interiors of 
celestial bodies (e.g. the earth) admits several theoretical interpretations. For 
example, estimates of the magnetic field in the earth’s liquid core (which is 
predominantly zonal and cannot be measured on the earth’s surface because of the 
weak. conductivity of the mantle) vary from 100 G (Hide 1966)) for which good 
agreement with the geomagnetic secular variations is obtained, and 5G (Busse 
1975), for which a successful dynamo model can be constructed. Also, the magni- 
tude of the velocity varies from 4 x lO-4m/s (Roberts & Soward 1972) to 
0.4 x 10-2m/s (Busse 1975). Thus flow speeds in the earth’s liquid core may 
exceed Alfvbn speeds, in which case critical-latitude absorption and emission 
(see Q 6)  may be relevant. The present work is mainly motivated by the need to 
elucidate the general properties of hydromagnetic waves in rotating (dissipation- 
less) systems. However, certain simplifying assumptions like the /?-plane approxi- 
mation (which admittedly is justifiable only for motions in thin shells of fluid; 
Stewartson 1967) have been made in order to make the analysis tractable. It is our 
intention to relax this assumption in a future study. 

In  the next section we set up the equations governing the propagation of 
hydromagnetic planetary waves on a /?-plane in the presence of a zonal flow and 
a ‘ toroidal’ magnetic field which vary with latitude. The differential equation 
for the northward veIocity perturbation is derived and its properties are analysed 
in the subsequent sections. In  Q 3 some general properties of the equations are 
discussed. In  Q 4 the results derived using the WKBJ approximation in Q 3 are 
applied to some velocity-magnetic shear profiles. The various types of ray 
trajectory that can arise are constructed by using the geometrical properties of 
the locus of real wavenumbers (Lighthill 1967; McKenzie 1972). 

In  Q 5 we examine reflexion and refraction of waves a t  a current-vortex sheet, 
the results of which may give a good approximation to the case where the latitu- 
dinal wavelength greatly exceeds the length scale of variation of the background 
state, i.e. the opposite extreme to slowly varying media. In  particular we find that 
the wave can be amplified (i.e. the coefficient of reflexion exceeds unity), thereby 
extracting energy from the streaming motion. Since ordinary two-dimensional 
Rossby waves cannot be amplified at a vortex sheet and since a magnetic shear 
acting alone does not favour wave amplification (in the context of the present 
problem), the implication of this result is that wave amplification is due to the 
simultaneous action of the magnetic and velocity shear. In qualitative terms we 
find that eastward-propagating Alfvbn waves can be amplified if the jump in the 
flow speed lies between two speeds which are respectively somewhat less and 
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somewhat more than the sum of the Alfvkn speeds on either side of the disconti- 
nuity. I n  this situation an incident eastward-propagating wave is transmitted 
as a westward-propagating Alfvh  wave that has been ‘blown’ eastwards by the 
rapid westerly wind. Similar results apply to westward-propagating Alfvkn waves. 
In  addition i t  has been shown that Rossby waves can be amplified in a sufficiently 
strong easterly flow. In this case the incident Rossby wave is transmitted as an 
eastward-propagating Alfvbn wave that has been ‘blown ’ westwards by the 
easterly wind. 

I n  Q 6 we investigate some properties of reflexion and refraction of planetary 
waves by a finite shear layer in which both the magnetic field and the flow vary. 
This corresponds to a full wave treatment as opposed to on the one hand the 
WKBJ approximation ( Q  4) and on the other the study of the layer as a disconti- 
nuity ( 5  5). By using the wave invariant of the system (which is constructed in 
3 3) as a measure of the intensity of the wave it is possible to isolate certain novel 
features of the propagation of waves in a finite double shear 1Ger. For example, 
it  is shown that if a wave incident on a westerly wind increasing with height in the 
presence of a uniform magnetic field encounters one critical latitude (i.e. a latitude 
where the zonal phase speed of the wave matches the Alfvbn speed) then it is over- 
reflected provided that the wave transmitted beyond the far end of the layer is 
evanescent. I n  the investigation of a current-vortex sheet in Q 4 this situation 
corresponds to perfect reflexion. The reason for the discrepancy in the result for 
a current-vortex sheet, for which the influence of the critical latitudes within the 
sheet is ignored, is traced to the fact that the main cause of over-reflexion in this 
particular case is that the wave extracts energy from the background state at the 
critical latitude, i.e. wave amplification is due to critical-latitude emission. Other 
results are given in Q 6. 

I n  an appendix we derive the reflexion and transmission coefficients for a 
finite shear layer and also discuss briefly the stability properties of a current- 
vortex sheet. 

2. The governing equations 
The equations of motion, induction and continuity and Gauss’ law for an 

incompressible, inviscid, perfectly conducting fluid rotating uniformly with 
angular velocity S2 in the presence of a magnetic field B are 

aB/at = curl (u A B), (2.2) 

div u = 0, div B = 0, (2.3) 

in which u is the fluid velocity, p the pressure, p the density and ,u the magnetic 
permeability. All quantities are measured in a frame of reference rotating with 
the fluid. 

Let us develop the equations governing the propagation of hydromagnetic 
waves in a rotating, homogeneous, thin shell of fluid of radius r through regions 
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of magnetic and velocity shear by making use of the P-plane approximation 
(Hide 1966; Hide & Jones 1972). We take local rectangular co-ordinates ( x  east- 
wards, y northwards, neglecting radial variations) and a basic state which 
consists of a zonal directed flow and magnetic field sheared latitudinally, i.e. 

u, = U(Y)*, B, = B(Y) 8 ,  (2.4) 

where 3 is a unit vector in the x direction, and in which the total pressure 
po + BU2p is given by 

a 
a Y  

f U = - - (PO + B;/~P). (2.5) 

If u = (u, v) and b = (bz, by) are the perturbations in the velocity and magnetic 
field, the linearized equations can be written as 

- +vU'-fv = --- 
Dt P a x  PP 
Du 

Dv 1 an B ab, 
-+fu = --- +--, 
Dt P aY PP ax 

Db,/Dt + vB' - b, U' = B au/ax, (2.8) 

DbJDt = B av/ax, (2.9) 

(2.10) 

where n = p + Bb,/p, D/Dt 3 a/at + U a/ax, 

f = f, +By, p = 2Q cos tIo/r, f, = 2 0  sin 8,, 

in which p is the perturbation in fluid pressure and 8, is the latitude. In (2.6)-(2.8) 
a prime denotes differentiation with respect to the argument. This notation will 
be adopted throughout the paper. 

Assuming perturbations of the form exp i(wt - kzx) and eliminating all variables 
in favour of v, the northward velocity, we obtain the following differential 
equation governing the latitudinal structure: 

(2.11) $"(Y) + dY) $(Y) = 0, 

where (2.12) 

(2.13) 
and a = -2k;V(GV'+ VU'k,)/dj(02-kzV2), 

d = w -  k,U, V = B(pp1-4, 

(P- U " )  
g(Y) = ' z  ('k,(k; V2 - 9 2 )  kz V2 - 6 2  

- VV" + V" - + kx P(kxVV'2 + 29V'U' + k, BU'2 
(k: V 2  - G2)2 

(2.14) 
Here G is the Doppler-shifted frequency and P the Alfvbn speed. 
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3. Some general results 
It follows from (2.1 1)-(2.14) with appropriate boundary conditions [such as, 

for example, (6.4)] that the quantity 

d = Re ( - ikL2gS* dgS/dy) (3.1) 

(cf. Eltayeb 1977), where the asterisk denotes the complex conjugate and Re 
refers to the real part, is a constant except a t  critical latitudes [i.e. a t  regular 
singular points of (2.11)], where it jumps discontinuously from one constant 
value to another. 

Now consider the energy flux density per unit mass, F say (as measured by a 
stationary observer), of an incompressible, infinitely conducting fluid described 
by a velocity U, pressure p and magnetic induction B: 

F = PU + $U2U -pp1[B2U - (B.  U) B]. (3.2) 

The f i s t  term on the right-hand side represents the rate of working of the pressure 
force, the second is the flux of kinetic energy and the last two terms, involving B, 
represent the flux of electromagnetic energy, described by the Poynting vector 
p-1E A B, where E is the electric field, given by E = - U A B, for a perfectly 
conducting fluid (see, for example, Eskinazi 1967, 5 10.6). The mean (denoted by 
an overbar) northward flux of energy associated with propagation of hydro- 
magnetic waves through the basic state can be calculated from (3.2) by expanding 
about the basic state (2.4). Using (2.6)-(2.10) to describe the perturbations we 
find that the mean flux P,,,, of wave energy to second order is given by 

- 
F,,,, = TG + UuV( 1 - kt  V2/h2). (3.3) 

Part of the Poynting vector, B,b,v, has been combined with pv to give the first 
term & which represents the rate of working of the 'total' perturbation 
pressure. The second term consists of the northward flux 4 2 U . u ~  of kinetic 
energy due to the interaction of the wave with the background and the remainder 
is the northward component of the Poynting vector, which reduces to pol Uh, b,. 
From (2.6)-(2.10) this second term can be written a s K  k ,U/h ,  so that 

- - w c -  P,,,, = n u ,  = - n u ,  c = o / k x .  
w c-u 

We now use the relation 

i k t  rI = (4 - k; V2/h) dV/dy + k,(kg V 2  - h2) U'v/h2 + kf8 (3.4) 

F,,,, = c d .  (3.5) 

for the total pressure II and use (2.12) and (3.1) to find that 
- 

Thus the invariant d is closely linked with the conservation of the mean north- 
ward flux of wave energy. In  the absence of angular velocity and magnetic field 
but in the presence of gravitational effects Eliassen & Palm (1960) have shown 
that the Reynolds stress is conserved except at  critical levels. Booker & 
Bretherton (1967), in their study on gravity waves, located an invariant quantity 
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which is closely linked with the Reynolds stress and called it 'wave action'. 
I n  the present study the invariant d can be shown to be proportional to the sum 
of the Reynolds and Maxwell stresses, which in turn can be related to the wave 
energy flux (measured in an inertial frame) by (3.5). 

The mean rate M of northward transfer of zonal momentum, which is given by 

M = p o u v ,  

M = kzG2d / (G2  - k% V'). 

can also be expressed in terms of d: 

(3.6) 

It then follows that M experiences an infinite jump across critical latitudes. 
Next we shall derive an equation for the invariant (i.e. the wave-action 

density) in slowly varying media where the WKBJ approximation may be 
adopted. The results will be exploited in the next section to deduce conditions 
for critical-latitude behaviour and for trapping of waves in certain regions of 
magnetic-velocity shear. 

Consider a basic state in which U and V vary on a large length scale e-l. Let us 
examine the evolution of this state a t  large times (i.e. of order e-l). Let 

Vo = V(Y,T)B, u0 = U(Y,T)ft, II = E-~II~(Y,T) ,  (3.7) 

where X = EX, Y = EY, T = Et (3.8) 

(cf. Grimshaw 1975). The mean-field equations then give [cf. (2.1)-(2.3)] 

au an 
E-B+fug = - 2 9 ,  aT ay (3.9) 

eav/aT = 0. (3.10) 

If G, @ and 6 are the perturbations in uo, IIo and V, respectively and if 

{G, @, G} = Re {(u,p, v) exp ie}, (3.11) 

where 6 = E-'@(X, Y, T), (3.12) 

then the perturbation equations can be written as 

-iQu+f$r\u+ikp-i(V.k)u = EQ, (3.13) 

- i&v-i(V.k)u = ER, (3.14) 

i k . u  = - sV.U,  ik .v  = -EV.V,  (3.15), (3.16) 

(3.17) 

(3.18) u = U0+EUl+ ..., 
with similar expressions for II and v. To zeroth order in e we get (3.13)-(3.16) 
with the right-hand sides set to zero. This set of homogeneous equations for 

i 
in which (JJ = -0 11', k = vo = (kz, ku) = (aolax, aopy), 

Q = - u T - V ~  + (u.V)V- (u .V)  U, 
R = -u,+(u.V)U-(U.V)V. 

The next step is to expand the perturbation quantities in E. Thus we set 
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u,, p ,  and v, will have a non-trivial solution only if a consistency condition is 
satisfied. This gives the dispersion relation 

k2[G2 - (V . k)2] +pGkx = 0 (3.19) 

for hydromagnetic Rossby waves. When first-order terms in e are considered we 
obtain another set of equations. Here the left-hand sides are the same as in (3.13)- 
(3.16) but with u,  p and v replaced by u,, p ,  and v, while the right-hand sides are 
Q,, R,, - V . uo and - V . v,, where Qo and R, are the values of Q and R given by 
(3.17) with u and v replaced by u, and vo respectively. This set of inhomogeneous 
equations will have a solution for ul, v, and p1 only if the right side of the system 
is orthogonal to the solution of the adjoint homogeneous problem (i.e. orthogonal 
to (u*, p*, v*); see Grimshaw 1975). Thus 

(8 I U , \ ~ + +  I v , ~ ~ ) ~  + V .  (Re (poug*) = Re{v,*(v,.V) U-ug*. (uo.V) U}. (3.20) 

If we now define a quantity sit by 
- -  

d = P,(UV - b,b,) (3.21) 

and carry out the calculations for all the terms in (3.20) on the same lines as in 
the study by Grimshaw (1975) we find that 

ad/aT + a(dv,)/a Y = 0, (3.22) 

where we have assumed for simplicity that u,, p o  and v,, as well as k, and w ,  are 
independent of X although this restriction is not necessary, and 

v, = (awlak,, awlk,) 

is the group velocity calculated from (3.19). 
It is noteworthy that the conservation equation (3.22) shows that the energy 

density of the system (as measured by an observer moving with the basic flow) is 

k4 [G2 + (V. k)2] sit (3.23) 
k2[G2 + (V .  k)2] 

2k, kz[w2 - (V . k)2] 
= -  

= + 2-P 

and that the wave energy flux is related to d by (3.5). We may also note that, 
although (3.22) is identical to the wave-action equations of Bretherton & 
Garrett (1968) and of Grimshaw (1975), the relation between sit (which is 
equivalent to the wave-action density) and E here is different. 

The WKBJ approximation then yields the two equations (3.19) and (3.22). 
The former is a local dispersion relation and is used in $ 4  below to examine the 
various types of ray trajectory that can arise in magnetic and velocity shear. The 
latter equation is usually known as the amplitude equation since it involves 1 ~ ) ~ .  
For example, in the steady state (i.e. a/aT = 0) we have 

(3.24) 
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FIGURE 1. The locus of real wavenumbers a t  a fixed frequency o for U = 0, U > 0 
(westerly) and U < 0 (easterly). The closed loops represent Rossby waves modified by 
magnetic forces while the open branches represent Alfv6n waves modified by Coriolis 
forces. The small arrows drawn normal to the locus of wavenumbers at points of inter- 
section with lines k, = constant indicate the direction of the ray (the group velocity). 

where the constant is determined by some particular values of k,, w, U ,  V and k,. 
Thus the amplitude is a complicated function of these parameters. For a uniform 
basic state, however, a simple relation may be obtained: 

1uI2 = I + k:/k:. (3.25) 

Here the amplitude increases indefinitely as the reflexion points (i.e. k, = 0) are 
approached while a minimum amplitude is attained at  points where the wave is 
not propagating east-west (i.e. where kz = 0). 

The last general result concerns the singular points of (2.1 1)-(2.14), namely the 
points where la@)\ = co and where \g(y)j = co. These are, respectively, 0 = 0 and 
0 = & k,  V .  The former point does not lie on the locus of real wavenumbers, 
according to (3.19), and consequently does not correspond to a wave propa- 
gating through a uniform background state, i.e. the presence of this singularity 
is entirely due to the inclusion of variations in the background state and hence 
the wave invariant is continuous there (see Eltayeb 1977). The latter points, at  
which the zonal speed of the wave, as measured in a frame moving with the local 
flow speed, matches the Alfvbn speed, correspond to critical latitudes which a ray 
(or wave packet), being neither reflected nor transmitted, approaches asymptoti- 
cally. If a critical latitude occurs at  y = yc then near y = ye equation (2.11) is 
approximated by 

9" + 9/4(Y - ?d2 = 0. (3.26) 
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FIGURES 2 (a, b ) .  For legend see next page. 
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FIQURE 2. (a) Wave normal diagrams a t  successive latitudes for jet-like variation of B 
(or V )  with latitude. The ray path associated with each type of wave can be constructed by 
following the direction of the arrows a t  each latitude for a given value of k,. (The diagram 
has been drawn for V ( 0 )  < V,  and U < K.) ( b )  'Alfvh'  ray trajectories exhibiting critical 
latitudes yc a t  k, = o( U + V(y,)) and reflexion points y,. where ki = 0. The rays labelled 
1 (2) correspond to westward (eastward) propagation. ( c )  'Rossby ' rays trapped around 
the centre of the magnetic jet. The ray labelled 3 (4) represents eastward (westward) 
energy propagation. 

This equation is free of any parameters characterizing the strength of the shear 
of the zonal flow and magnetic field. (In fact it is exactly the same equation as 
that governing the propagation of gravity waves in a shear flow characterized by 
a Richardson number of i.) This feature contrasts with non-hydromagnetic 
Rossby waves, which, near y = yc,  are governed by the equation 

d2$/dz2 + $12 = 0, (3.27) 

where = (Y - y,)  (P- U")/U', (3.28) 

which shows that the behaviour of ordinary Rossby waves near a critical latitude 
is characterized by a length scale 

L = 1 U'(Yc)/(P- U"(Yc))l. (3.29) 

We also note that the singularity is changed from the ( y  - Y , ) - ~  type which prevails 
in the presence of the magnetic field to a ( y -  yc)-I type in its absence. 

4. Ray trajectories in magnetic-velocity shear 
In  this section we examine the various types of ray trajectory that arise in 

slowly varying magnetic and velocity shear. It is well known (see, for example, 
Longuet-Higgins 1965; Lighthill 1967) that the frequency w and longitudinal 
wavenumber k, are conserved along a ray path in the y ,  x plane. Thus, by noting 
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FIGURE 3 (a ) .  For legend see next page. 

that the ray direction (i.e. the direction of the group velocity) is normal to the 
locus of real wavenumbers, the ray path can be constructed by finding the shapes 
of the loci of real wavenumbers a t  successive values of y ,  for any given variation 
of the zonal flow speed and magnetic field with y. (For other applications of this 
geometrical construction see, for example, Lighthill 1967; McKenzie 1973.) In  
figure 1 we have sketched the wavenumber curves for U = 0, U > 0 (i.e. westerly 
wind) and U < 0 (easterly wind). It will be observed that, for a given wand k,, Jk,l 
decreases for U positive and increasing, whereas for U negative and decreasing 
I k,[ increases. 

By using the above-mentioned geometrical construction we have inspected 
the various types of ray trajectory that are possible in two different magnetic 
shear profiles. One profile is a symmetric jet-like variation in the Alfven speed (or 
magnetic field) with latitude and the other is an antisymmetric east-west shear 
in which the magnetic field is zero a t  y = 0. 

Figure 2 illustrates the four different types of ray trajectory that can arise 
with a jet-like variation of the magnetic field. We have assumed that I UI < V 
and also that V < V, at y = 0. Here V, is the value of V when the wave normal 
curves of the Rossby wave and the westward-propagating Alfv6n wave coalesce 
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FIGURE 3. Ray trajectories for an east-west magnetic shear. These can be constructed by 
using the wave normal curves of figure 2 ( a ) ,  in which the direction of B increasing is 
reversed. (a) ' AlfvBn ' ray trajectories exhibiting critical latitudes. Rays 1 correspond to 
westward propagation and rays 2 to eastward propagation, for which i t  will be observed 
that trapping occurs if k, > w / (  V ( 0 )  + U ) .  ( b )  Modified Rossby ray trajectories. Rays 3 are 
confined to one side whereas rays 4 penetrate from south to north and vice versa. Critical 
levels for both types occur if the ultimate magnetic field strength is sufficiently large (i.e. 
if k, < w / (  - V(c0) + U ) ) .  

to form one curve. (V, is a complicated function of U ,  w and kx, and has been 
calculated numerically by Hide & Jones 1972). Rays 1 and 2 correspond, 
respectively, to waves propagating westwards and eastwards in the Alfvdn 
mode modified by the p-effect. These rays exhibit critical latitudes at  

kx = @I( U T V Y J )  
and are reflected from latitudes where k, = 0. The sources of the rays can be any 
point on the ray path since integration of the equation for the ray path introduces 
an arbitrary constant which in any particular case is determined from the loca- 
tion of the source of the ray. For convenience we have chosen the origin in each 
case in such a way that the rays are symmetric about the y axis. The corre- 
sponding rays for y < 0 are obtained by reflecting rays 1 and 2 about the x axis. 
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Rays 3 and 4 correspond to westward phase propagation of Rossby waves 
modified by the magnetic field. These rays are trapped around the centre of the 
magnetic jet, again being reflected at  latitudes for which k, = 0. Ray 4 carries 
energy eastwards although its phase speed is westward, 

Figure 3 illustrates the different types of ray trajectory that can arise in an 
antisymmetric magnetic shear. (Note that, since the dispersion relationship (12) 
is even in V (or B),  those trajectories are also applicable to a symmetric shear in 
which V = 0 at y = 0.) Broadly speaking we see that there are three types of 
trajectory: (i) those that penetrate right through the shear from south to north 
(rays 1' and 4) along with their reflexions about the x axis, which describe north- 
to-south penetration; (ii) those that are confined to one side or the other (rays 2 
and 3); (iii) those that are trapped about the centre of the magnetic shear (ray 2'). 

The various types of ray path that are possible in different forms of zonal flow 
with latitudinal shear have been discussed by Mekki & McKenzie (1977). The 
presence of the magnetic field introduces two more modes (which are essentially 
Alfvkn waves modified by the Coriolis force) that are capable of exhibiting 
critical latitudes. Here we shall not discuss in detail the effect of zonal-flow shear 
on these modes but simply mention that such modes will exhibit ray paths of 
types 3 and 3' in figure 2 and of types 3 and 4 in figure 3 (b) .  

5. Reflexion and refraction of waves at a current-vortex sheet 
In  marked contrast to the previous section, where we discussed the propagation 

of waves in slowly varying media, we now consider the propagation of waves 
across discontinuities in the basic state. The results of the discussion may apply, 
asymptotically, to the case where the latitudinal wavelength 27rlk, is very much 
greater than the length scale of variation of the basic state. (See Eltayeb & 
McKenzie (1975) for a formal treatment of such a limit for gravity waves 
incident upon a shear layer.) 

We consider two uniform basic states separated by a current-vortex sheet 
located in the plane y = 0. The undisturbed flow velocities Ul% and U,% and 
magnetic fields Bl% and B,% are tangential to the sheet, where the subscripts 1 
and 3 refer respectively to the regions y < 0 and y > 0. (The suffixes 1 and 3 are 
used here to facilitate comparison with the study of a finite shear layer in 9 6 . )  
A wave incident on the sheet from y < 0 gives rise to a reflected wave, a trans- 
mitted wave and a distortion of the sheet. Application of the boundary conditions 
(namely continuity of displacement and total pressure balance) a t  the distorted 
sheet determines the amplitudes of the reflected and transmitted waves. 

In  y 0 the northward velocity may be written in the forms 

(5.1) 

where I R [ and I TI are respectively the reflexion and transmission coefficients. 
We have assumed perturbations of the form exp i(ot - kzx)  so that the kVi 
(i = 1,3)  satisfy the dispersion relationships 

(5.2) 

Y > < 0, "1 211 = exp(ik,,y)+Rexp(-ik,,y), Y 
21, = T'exp (ik, ,y) ,  

kEi + k: +PBi k,/(B: - k i  Vq) = 0, hi = w - kzUi.  
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FIGURE 4. The wave normal diagrams on either side of a current-vortex sheet for flow 
speeds giving rise to wave amplification. Snell’s laws of reflexion and refraction are 
illustrated geometrically by conserving k, across the discontinuity. The arrows labelled 
i, r and t indicate the ray directions of the incident, reflected and transmitted waves. The 
shaded areas of the Rossby and Alfv6n modes for y < 0 correspond to total reflexion. 

The laws of reflexion and refraction follow from the continuity of w and k, across 
the discontinuity (see figure 4). The normal component k, of the wavenumber on 
either side satisfies (3.19) and its sign must be chosen in such a way that the 
energy flux of the incident wave is directed towards the interface whereas the 
transmitted wave’s energy flux must diverge from the interface. If ki3  < 0, the 
sign is chosen to ensure that the amplitude of the transmitted wave decays in 
the region y > 0. I n  this case, in which k,, is purely imaginary, (5.8) below shows 
that total reflexion (i.e. 1RI = I )  occurs. 

When the distortion of the sheet is written in the form 

y = 7 exp i(ot - k,x),  (5.3) 

the kinematic boundary condition, namely tha t  the sheet is a streamline common 
to both flows, becomes, on linearization, 

. A  * A  vu1-aw,7 = v3-zw37 = 0, 

vJ4jl = v3/03 a t  y = 0. 
which immediately gives 
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On writing down the dynamic boundary condition that the total perturbation 
pressure be continuous we must remember that the linearized pressure perturba- 
tion consists of two parts, one of which is associated with the waves (i.e. Il) and 
the other of which is due to evaluating the basic state pressure TZ, a t  the perturbed 
boundary (i.e. 7 aII,/ay). Thus 

K-fU17  = rI3-.W,% (5.6) 

where we have used (2.5). We now use the expression (3.4) for ll and (5.4) to 
eliminate 7 to find that 

(G2, - k: 72,) vile,  = (6: - k i  V:) v;/G3 a t  y = 0, (5.7) 

where a prime denotes differentiation with respect to y. 

R and T: 
Substituting (5.1) into (5 .5 )  and (5.7) we find the following expressions for 

T = (G3/G1) (1 + R), (5.9) 

in which we have made use of the dispersion relationship (3.9) in y 5 0. 
Equation (5.8) shows that IRI > 1 if 

',G, < 0, (5.10) 

since kUl and k,, are always of the same sign for waves carrying energy north- 
wards. If this condition is interpreted in terms of wave energy densities (see, for 
example, McKenzie 1970) it  implies that wave amplification can arise in the 
present problem only if the energy density of the iicident wave is of opposite sign 
to the energy density of the transmitted wave (but see Eltayeb 1977). Condition 
(5.10) can be written in terms of the magnitude of the jump in the flow speed across 
the sheet required to render wave amplification possible. Without any loss of 
generality we take medium 1 to be a t  rest so that G1 = w ( > 0 for definiteness) ; 
then we find that 6, can be negative only if 

Iu,I > V3, (5.11) 

i.e. if the jump in the flow speed exceeds the Alfven speed in medium 3. However, 
t,his condition is not sufficient since in deriving it we have implicitly assumed that 
the transmitted perturbation is a propagating wave, i.e. that k,, is real. Figure 4 
illustrates geometrically the circumstances in which (5.10) is satisfied with k,, 
real for westerly winds. Thus the necessary and sufficient conditions for hydro- 
magnetic planetary waves to be amplified in a westerly shear may be written as 

k,, > w/(U,-V3), IC,, > w / k  (5.12) 

where kUi (i = 1,3)  is the largest root of the cubic 

(U: - V:) [k , -  w/(V, +&)I  [k , -  w/(V,-  V,)] +P(w - k,V,)/k, = 0. (5.13) 

In  qualitative terms conditions (5.12) imply that wave amplification is possible 
if the jump in the zonal flow speed lies between speeds which are respectively less 
and greater than the sum of the Alfven speeds. This ensures that an incident 
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positive-energy Alfvdn wave propagating eastwards is transmitted as a negative- 
energy (G3 < 0) Alfvhn wave propagating westwards (relative to medium 3) that 
is blown eastwards by the rapid westerly zonal flow. 

We next consider medium 1 to be a t  rest and medium 3 to be flowing westwards 
(i.e. U, < 0) a t  a speed exceeding the Alfv6n speed in medium 3 (i.e. lU3f > V3). If 
we assume that V, < V, so that the Alfvh and Rossby branches of the locus of 
wavenumbers are separate, we find that the following conditions are sufficient 
to ensure wave amplification: 

- k,i < 4 ( U 3  - V31, - kU3 < W / K  (5.14) 

where kua is the largest root kx (in magnitude) of the cubic 

(U: - V:) [kz + o/( I ql- V,)] [k ,  + w / (  I V,l+ V,)] +P(w - L$kz)/kx = 0. (5.15) 

If these conditions are satisfied an incident positive-energy westward-propa- 
gating Alfv6n wave is transmitted as a negative-energy eastward-propagating 
Alfvbn wave that is ‘blown westwards’ by the easterly wind. Qualitatively 
conditions (5.14) imply that the jump in the flow speed lies between two speeds 
which are respectively less and greater than the sum of the Alfvhn speeds. At 
still larger flow speeds we find that the reflected Rossby waves can be amplified 
with the transmitted wave being a negative-energy Alfv6n wave blown west- 
wards by the flow. In  this case the condition for wave amplification is simply 

(6.16) 

where W, is the largest negative root of the cubic 

w2 - vz, + w3p/w= = 0. (5.17) 

If V, > V,, so that the westward-propagating Alfv6n and Rossby waves form a 
single branch of the locus of wavenumbers, the condition for wave amplifica- 
tion is 

(5.18) 

where ku3 is the largest root of the cubic (5.15). 
The conditions derived for wave amplification cannot be satisfied in the 

absence of the magnetic field, as can be seen from inspection of the wave normal 
curves (see also Mekki & McKenzie 1977). It can also be seen that wave amplifica- 
tion is not possible in the absence of the shear flow. It may therefore be concluded 
that wave amplification is facilitated by the simultaneous action of the magnetic 
field and shear flow. 

6. Reflexion from a finite shear layer (critical latitudes) 

and the velocity U are both parallel to the x axis, so that 

V ,  U = V(y), U(y) for 0 < y < L, 

Consider a finite shear layer of thickness L. Suppose that the magnetic field B 

(6.1) I for y Q 0, 

for L < y. r0 V3, u3 
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We shall number the regions y < 0 , O  < y Land y 2 L as 1 , 2  and 3 respectively. 
It is assumed that V(y) and U ( y )  are continuous a t  y = 0,  L, so that V ( 0 )  = V,, 
U ( 0 )  = 0,  V(L) = V, and U(L) = U,, where V,, V, and U3 are constant. 

Our objective is to discuss reflexion from and transmission through the shear 
layer. An incident wave gives rise to a reflected wave of amplitude 1 RI in region 1 
and a transmitted wave of amplitude IT1 in region 3. The solutions in regions 1 
and 3 are then given by (5.1) and (5.2). (Note that in a uniform medium h = 1 and 
v = #.) I n  region 2 the solution naturally depends on the particular choice of U 
and V .  However, it  is our purpose to establish some general results and to this 
end we may write 

where W, and W, are the two independent solutions of (2.11). If the solutions W, 
and W, are known, the amplitudes R, T ,  A and B can be computed from the 
relations obtained by applying the boundary conditions a t  y = 0,  L. The relevant 
boundary conditions here, namely continuity of both the normal component of 
velocity v and the perturbation total pressure II, can be written in terms of 4 as 

[hd] = [6(G2 - k i  V z )  (h’# + h9’) + h#U’(d2 - k: Vz)  -fk,&h#] = 0 a t  y = 0,  L, 

where the square brackets denote the jump. If we assume that U’ and V‘ (where 
V is the Alfvh speed) are continuous a t  y = 0, L, conditions (6.3) reduce to 

# = AW,(Y) +BW,(Y), (6.2) 

(6.3) 

The derivation of the expressions for R, T ,  A and B is relegated to the appendix. 
We shall now establish some general results using the invariant of the system. 

Evaluation of a? in regions 1 and 3 gives, respectively, 

where the suffixes s and n refer to ‘south) and ‘north’ of the shear layer. If there 
is no critical latitude within the layer then a? takes the same value everywhere 
and thus 

Now an inspection of the group velocity for the dispersion relationship (3.19) 
shows that waves propagating energy northwards are characterized by k,, k,, > 0. 
Hence IRI < 1 and wave amplijicatioh (or over-reflexion) is not possible in the 
absence of a critical latitude whatever the behaviour of U ( y )  and V ( y )  in the layer. 

When a critical latitude exists within the layer and a? is discontinuous there, 
progress can-be made if we can solve (2.11) near the critical latitude y = yc and 
determine the correct matching for the solutions on either side of y = yc. Now 
near a critical latitude (i.e. where 62 = k: V z )  (2.11) reduces, to the leading 
order, to 

SO that we mav write 
9’’ + 4 / 4 ( Y  - Y C Y  = 0, 

This solution has a branch point a t  the critical latitude y = yc. The matching 
procedure a t  this point can be determined either by considering an initial-value 
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problem or by allowing w and k, to be complex with small imaginary parts. In  the 
latter approach we impose the condition t>hat the solution decays as y -+ co for 
fixed t but grows with time for fixed y, so that energy is propagated northwards 
(Miles 1961; Booker & Bretherton 1967). Thus for an exponential dependence 
exp {i(wt - k,x - k, y)}, where w = w, + iwi and k, = k,, + ikui, we must take 
kUi < 0 and wi < 0. With these values of w and k,, (6.8) becomes 

where a plus (minus) sign refers to the critical latitude where k, = w / ( &  ? V,) and 
Uf and Vi denote U'(y,) and Vf(yc). Now the argument of y - yc - iwi/k,( U: k Vf) 
varies from zero for large positive values of y - yc to + 7r or - TI for negative values 
of y - yc depending on whether kx( U k E Vf) is positive or negative. Accordingly 
the appropriate solutions on either side of the critical latitude can be written as 

] (6.10) ' = (  +ily-yc/C13{A+B(logly-ycI+i7rr)} for y > Yc 

1 (6.11) a = (  

Y - Y C l W  +Blog IY-Ycl)  for Y < Yc 

for kx( Uf +_ Vf) < 0 and 

IY-yclt(A+BloglY-ycl) for Y < Yc 

- i J Y - ~ c / C I ~ ~ ~ + ~ ( ~ o g J ~ - Y c I - i ~ ) ~  for Y > Yc 

for k,( V i  +_ Vi) > 0. 

of the critical latitude. The calculations yield 
The invariant d can now be evaluated a t  two points near but on opposite sides 

ds = Re ( - iA * B/kz), .S, = ds k 7r (B1 2/kf, (6.12) 

where the upper and lower signs refer to (6.10) and (6.11) respectively. Thus the 
invariant a3 is altered by an additive quantity in contrast to the multiplicative 
factor in the case of the wave action of gravity waves (Eltayeb & McKenzie 
1975). 

Use of (6.5) and (6.12) gives 

IRI = 1 - (k,3/&1) I TI + (77 IBI "I k,,l) sgn ( Uf k Vf). (6.13) 

Apart from the critical latitudes there are two other latitudes which deserve 
a special comment before we discuss the four examples below. One type of 
latitude, y = yo, say, occurs where the flow speed matches the zonal phase speed 
of the wave. d is continuous a t  y = yo since (2.11) is regular there, but a wave 
crossing this latitude changes the sign of its energy density since D changes sign 
there. The mean rate $1 of northward transfer of zonal momentum [cf. (3.6)] tends 
to zero as a wave approaches yo from either side. 

The other type of latitude, y = y,, say, occurs where g(y) = 0. The solution of 
(2.1 1 )  changes character as the waves cross y = y,. For y near y,, (2.11) becomes, 
a t  leading order, 

+'' + g'(yr) (Y - ~ r )  # = 0. (6.14) 

The solution of this equation can readily be expressed in terms of Airy functions: 

4 = AAi(z)+BBi(z),  z = [-g'(y)]f(y-y,). (6.15) 
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From the standard properties of Airy functions Ai and Bi are both oscillatory for 
z < 0. However, for z > 0,  Ai is exponentially decreasing and Bi is exponentially 
increasing. Since the solution (6.15) is legitimate only within a distance of order 
lg’(yr)l-*, this solution must asymptotically match with the solution of (2.11) 
away from y = yr. Thus the solution W, does not decay to zero and W, does not 
grow to infinity as evinced by the WKBJ method. 

Now explicit expressions for the amplitude of the reflected and transmitted 
waves can be obtained only after the forms of U and V have been specified and the 
solutions W, and W, (see appendix) have been found. However, the purpose of the 
present paper is, as mentioned in the introduction, to indicate the general 
behaviour of the waves as they propagate through the layer using a full wave 
treatment. Indeed it is possible to envisage situations which will give rise to 
perfect reflexion in the vortex-sheet treatment but lead to wave amplification 
in a study of a finite shear layer (see example 1 below). 

We shall now treat some particular cases. Without any loss of generality we 
take V > 0. Since the transformation w --f - w and k, -+ - k, leaves (2.11) un- 
changed, we may take w > 0 and allow k, to take positive or negative values. We 
also find it convenient to adopt a notation for the non-zero values of k, where 
k, = 0 in regions 1 and 3. Let these values be k,, in region 1 and k,, in region 3 
(i = 1, 2, 3). We shall always associate i = 1 with the Rossby wave, i = 2 with 
the Alfven wave branch near k, = w / ( U -  V )  and i = 3 with the Alfven wave 
branch near k, = of( U + V )  (see figure 1) .  

Example 1. Westerly wind increasing with latitude 

Consider a westerly wind ( U  > 0 )  which increases steadily from zero at y = 0 to 
a maximum U, a t  y = L. Suppose that an Alfvkn wave for which w /  V < k, < k,, 
is propagating in region 1 towards t,he shear layer. The behaviour of the wave in 
the layer and in region 3 will depend very much on the maximum speed U,. For 
simplicity we assume that V is uniform throughout but necessarily non-zero. 

If U, varies so slowly that U, - V < w/k ,  then the wave will propagate through 
the layer without encountering any critical latitudes to emerge in region 3 as a 
positive-energy propagating wave if k,, > k, > w/(U3+ V ) ,  in which case the 
reflexion and transmission coefficients are related by (6.6)) or as an evanescent 
wave otherwise, in which case IT1 = 0 and IRI = 1. In  either case over-reflexion 
is not possible. However, if U,- V > w/k,, the situation is different. Since U is 
steadily increasing, there will exist a value Uc of U such that U,- V = w/kz,  i.e. 
the wave will encounter a critical latitude a t  y = yc,  say, as i t  moves northwards 
towards region 3. The form of the wave as it approaches the critical latitude, 
however, depends on the function g(y) .  Since g(y)  > 0 both in region 1 and near 
y = yc then either g(y)  2 0 in 0 < y Q yc or g(y )  has an even number of zeros in 
this interval. If g(y)  2 0 for all y Q yc then the solution of (2.11) is oscillatory in 
this interval and the wave propagates all the way to the critical latitude. If, 
however, g(y )  < 0 in some subintervals of 0 Q y Q yc, the solution of (2.11) is 
oscillatory where g(y) 2 0 and exponential where g(y )  < 0. Whether g(y )  has zeros 
or not the wave will eventually reach the critical latitude in the form of a propa- 
gating wave [cf. (6.7)]. Furthermore, since w / (  U - V )  > w / U  > w / (  U + V )  for 
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U > 0, the wave must pass through the latitude y = yo, where the flow speed 
matches the zonal wave speed, before it reaches the critical latitude. At y = yo 
the wave changes from a positive- to a negative-energy wave in y > yo. At the 
critical latitude 0:- V i  > 0 since U' > 0 and VE = 0 by hypothesis. The n-term 
in (6.13) is then positive and hence IRI is increased by the presence of the critical 
latitude. This is an indication that wave amplification (or over-reflexion) is 
possible. Indeed, if k, > k32, the wave is evanescent in region 3, i.e. IT( = 0, and 
(6.13) reduces to 

IRI2 = 1 + n  lB/2 / /kul l  > 1, (6.16) 

i.e. the wave is amplified. (Note that in the vortex-sheet treatment this situation 
correnponds to perfect reflexion). However, if k, < k,,, the wave will emerge in 
regioii 3 as a negative-energy propagating Alfv6n wave (i.e. IT1 $; 0) and it is not 
possible, in general, to decide whether wave amplification will occur or not 
although it may be anticipated that wave amplification may be possible if 
k,,/k,, < 1,  i.e. if the transmitted wave is a long wave. It should be pointed out 
here that wave amplification is due to the 'emission' of energy a t  the critical 
latitude, as is clearly shown by (6.16). 

Example 2. Easterly wind increasing with latitude 

Consider a velocity profile in which U decreases steadily from 0 a t  y = 0 to a 
minimum value U, a t  y = L and also assume that V (+ 0) is uniform throughout 
the medium. Suppose that a Rossby wave in region 1 with a prescribed k, (i.e. 
0 > k, > kol) is incident on the layer. If V -  U, < w/(  - kx) ,  the wave will propa- 
gate right through the layer without encountering a critical latitude and will 
emerge in region 3 as a Rossby wave or as an AlfvBn-Rossby wave depending on 
whether V 5 V,. I n  either case wave amplification is impossible since IRJ and 
IT1 (=f= 0 )  are given by (6.6) with (ku3/kul) > 0. 

I n  the case V - U, =. w / (  - kx) ,  the wave propagates until it  reaches a critical 
latitude where V -  U, = - w/k,, crosses this critical latitude and propagates 
northwards. Since UA < 0 and VA = 0, then Ug - VL < 0 and the n-term in (6.13) 
is negative. The behaviour of the wave beyond this critical latitude depends on 
whether U, 5 - V + kw/k,. 

If U, > - V + w/k,, the wave will not encounter another critical latitude. If 
k, > k3,, the wave is evanescent in region 3, i.e. IT1 = 0, and (6.15) gives 

(6.17) 

a result which shows that wave amplification is impossible. If, however, k, < k32, 
the wave will emerge as a positive-energy wave in region 3 and again wave 
amplification is impossible since k,,/k,, > 0. 

If U, < - Vt-wfk,,  the wave will encounter another critical latitude where U 
satisfies U,+ V = w/k,, after it has passed through the latitude y = yo, where 
U = w/k,, and has changed from a positive- to a negative-energy wave. AS the 
wave crosses the second critical latitude the reflexion coefficient is reducedfurther 
since the n-term is also negative here. Indeed if B is the amplitude of the solution 
with a logarithmic singularity near the second critical latitude then (6.13) gives 

lRI2 = 1 -n[lB12+ 1Bl2I1lky1l2 (6.18) 
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since the wave will emerge as an evanescent wave in region 3 and hence IT I = 0. 
Thus the presence of a second critical latitude in an easterly windsupplements the 
first one in reducing I RI . 

Example 3 

Consider a magnetic-velocity shear in which (i)  U ( > 0) increases steadily from 
zero in region 1 to U3 in region 3 in a such a way that U3 < V,, and (ii) V 
decreases steadily from V, in region 1 to V, in region 3 such that U,-V, > 0. 
Suppose that a wave for which k,, > k, > wl(U,+V,) is incident on the finite 
shear layer from region 1.  Suppose further that U3 and V, are such that 

kz > w(U3 - v31, 
so that the wave will encounter a critical latitude before it reaches region 3. 
Since U - V increases steadily from negative to positive values UL - V: > 0 and 
the n-term in (6.13) is positive. It then follows that the same conclusions as were 
reached in example 1 apply here. 

Example 4 
Consider the situation when U = 0 everywhere, i.e. the case of a purely magnetic 
shear. If the incident wave is an eastward-propagating Alfv6n wave, i t  will 
encounter a critical latitude a t  V = wlk, only if V decreases from V, to V,, in which 
case V;  + UL < 0 and the wave will emerge in region 3 as an evanescent wave. R is 
then given by (6.17). If, on the ot,her hand, the incident wave is a westward- 
propagating Alfv6n wave, it will encounter a critical latitude a t  V = - wlk, only 
if V increases with y. Here U i  - V; < 0 and again the wave will be evanescent in 
region 3. R is given by (6.17) here also. We may therefore conclude that wave 
amplification is impossible in the absence of a shear flow (in the present problem). 

To conclude this section, we point out that unlike the above four examples 
there may exist certain situations in which the critical latitudes encountered by 
the wave give n-terms with differing signs. Consider, for example, an easterly 
jet in which the velocity decreases steadily from zero to a minimum value 
Urn < - V + w/kz and thereafter increases to U, > - V + wlk,. Here the wave will 
encounter a t  least three critical latitudes, the first two of which will give negative 
n-terms and the others positive n-terms. I n  such a situation no firm conclusions 
as to the possibility of wave amplification can be made. Similar results hold for 
westerly jets and for series of easterly or westerly jets. 

We wish to thank a referee for pointing out an error in an earlier draft of the 
paper and Professor Sir James Lighthill for some helpful comments. 
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Appendix 
RefEexion and transmission coeficients for a magnetic- 

Application of the boundary conditions (6.4) to the solutions (6.2) yields the 

velocity shear layer 

equations 

TI = T exp ( ikuaL)  = AW,(L) +BW,(L), 

ikul(i -R) = AW;(O)+BWh(O), 

(A 2) 

(A 3) 

iku,Tl = AW;(L)+BW;(L).  (A 4) 

I n  the case of discontinuities a t  y = 0, L, when the boundary conditions (6.3) 
apply, similar equations are obtained. Now straightforward manipulation of 
(A 1 )  -(A4) gives 

where 

R =  -SWi(O) - Wi(0)  +ikUl[SW,(0) + W,(O)] 
SWi(0) + W 2 0 )  +ik,,[SW,(O) + W,(O)]  ’ 

I n  deriving these equations we have taken W,, ,(L) and W;, ,(L) to include the 
matching requirements a t  all critical latitudes within the layer. 

Dispersion equation for ripples on a current-vortex sheet 

The dispersion equation for the natural modes of a finite double (magnetic and 
velocity) shear layer are obtained from (A 1)-(A 4) by letting the amplitude of the 
incident wave be zero and setting to zero the determinant of the coefficients of 
the wave amplitudes. This is given by the zero of the denominator of (A5),  i.e. 
of the reflexion coefficient. I n  the case ofa  discontinuity this equation is obtained 
from (5.8). Thus 

in which 
kul(d2 - k: V:) + ku3(d2 - k: V i )  = 0, (A 10) 

kUi = ~ i [ k ~ + ~ ~ i k , / ( d 5 - k : V 7 5 ] t ,  j = 1 , 3 .  (A 11)  

For values of kz for which kEj < 0 the sign of the radical in (A 11) must be chosen 
such that disturbances decay into the regions y 5 0. Similarly, for values of kz for 
which kzi > 0 the sign of kui (which is now real) must be chosen so as to ensure 
that disturbances on either side of the sheet correspond to energy being carried 
away from the sheet. It is these restrictions on kui that Iemove the algebraic 
character of (A 10). 
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A complete discussion of the solutions of (AIO) is quite complicated (see 
Chandrasekhar (1961, p. 501) for a discussion of a similar problem) and is beyond 
the scope of this appendix. It is a t  present being examined in detail and we hope 
to report on it in the future. However, it may be indicated that it is possible to 
isolate certain situations in which wave amplification is possible in a stable 
current-vortex sheet. 

Here we shall simply note that the magnetic field exercises a stabilizing 
influence. For example, if we ignore Coriolis effects we find that the sheet is 
stable provided that the jump in the flow speed across the sheet does not exceed 
2*( V ;  + V$. The ‘,&effect’ is more difficult to analyse but an inspection of the 
asymptotic cases /3 small and p large indicates that it can be either a stabilizing or 
a destabilizing influence depending upon a variety of conditions. 
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